If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-14x-5=0
a = 13; b = -14; c = -5;
Δ = b2-4ac
Δ = -142-4·13·(-5)
Δ = 456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{456}=\sqrt{4*114}=\sqrt{4}*\sqrt{114}=2\sqrt{114}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{114}}{2*13}=\frac{14-2\sqrt{114}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{114}}{2*13}=\frac{14+2\sqrt{114}}{26} $
| (7p+13)+2p=18+4 | | (x+5)/3=(x-4)/2 | | 2(x+3)=4+3(x-2) | | 2(x+3)=4+3(x-2 | | f(-6)=-10 | | 3(4y-3)-4y=23 | | 3(x-9)/2=6 | | 6/x=14/30 | | 16x-5(2x-3)=23+7(6x+4 | | 150=4.5p | | 10x-3=89 | | 10x-3-42=89 | | 62/3=x | | 60.5=b(2b) | | 5v+30=7v+24 | | 9v-18=8v-10 | | 2s+3=3s-10 | | 11r-142=13r-172 | | 4w-36=13w-216 | | 11u-174=8u-120 | | 2u^2=-5u | | (6x+5)=79 | | 4v-26=11v-145 | | -4z^2-9z-4=0 | | -4w^2=8w | | 11w-110=12w-124 | | 4k+8+14=90 | | 15+7d=8 | | 49*2=146-x | | (137*2)=180+x | | 4c+10c-2c+8=36 | | 42^2=23x+5 |